
AD-A272 512

Technical Repo 1429

Maygen:
A Symbolic Debugger

Generation System

DTICSELECTE
NOV 16 1993

A.f

- Christine L. Tsie

MIT Artificial Intelligence Laboratory

This docu=ent has bee,, *ppIovd
for public release and sole; its I
distribufino is Unli•tited.

93-28010

93 11 15 039

Form Approved

NEPORT DOCUMENTATION PAGE oM 0ov74-018
P u b lc r edi o r i n b u fr d f f 9 '•n h c Ois cl t o n o f I n t r -A tl n * -i - i t - - 4 vf o 1 c e , wr te . t h e t i m e to , 'e .-'aw - 9 ,, •9' ts de a rc h in g e vtl . c r0t. i iMo 0e s

gatherinq and maintaining the data needed, and (orpoietnnq me- ri the (ollecdon of information Sond comments regarding this burden estimate or any other auxed of ths,
I € ofltOn O nformation. in(cuding suggestons for rvauoncq this burden to WVahinqton Neadquarters Ser'vifets ,tsrelorate f Or iformIation Overstions and flite ri. 1itt Jet feflOn
Oai. q Highway. •utj e 2104 Arlington VA 2)202 40)0 and 10 t- Offll m If "Managi mnent and Budget Pa4m..nom Rnductorin 'roec (0704 08t). Wash-ngtorn. OC 20S03

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 1993 technical report
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Maygen: A Symbolic Debugger Generation System N00014-91-J-4038

6. AUTHOR(S)

Chrstine L. Tsien

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) B. PERFORMING ORGANIZATION

Artificial Intelligence Laboratory REPORT NUMBER

Massachusetts Institute of Technology
545 Technology Square AI-TR 1429
Cambridge, Massachusetts 02139

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

Office of Naval Research
Information systems
Arlington, Virginia 22217

I1. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution of this document is unlimited

13. ABSTRACT (Maximum 200 words)

With the development of high-level languages for new computer architectures comes the
need for appropriate debugging tools as well. One method for meeting this need would be

to develop, from scratch, a symbolic debugger with the introduction of each new language

implementation for any given architecture. This, however, seems to require unnecessary
duplication of effort among developers. Compilation technology has alleviated some du-

plication of effort in the development of compilers. Can similar ideas aid in the efficient
development of symbolic debuggers as well?

Maygen explores the possibility of making debugger development efficient by influencing
the language and architecture development processes. Maygen is a "debugger generation

(continued on back)
14. SUBJECT TERMS 15. NUMBER OF PAGES

debugging generation 85

symbolic debugging multilingual debugging 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 12. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
P$..jcrmbfd by ANSI Sid 1)9-16

Block 13 continued:

system," built upon the idea that symbolic debuggers can be divided into three components:

a set of source language interface routines, a set of machine architecture interface routines,
and a language-independent and architecture-independent debugger skeleton. Maygen then
exploits this modularity: First, Maygen precisely defines as well as houses the language-
independent and architecture-independent debugger skeleton. Second, Maygen defines the
protocol for interface interaction among source language developers, machine architecture
developers, and the general-purpose debugger skeleton. Finally, Maygen provides a frame-
work in which the resident debugger skeleton is automatically developed into a stand-alone
symbolic debugger; the resulting debugger is tailored to the specific provisions of a particular
language group and a particular architecture group.

Maygern: A Symbolic Debugger Generation System

by

Christine L. Tsien

S.B. Computer Science and Engineering, Massachusetts Institute of Technology
(1991)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1993

Q Christine L. Tsien, MCMXCIII.

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

DTIC QUALITY INSPECTED 8 Accesýion For
NTIS CRA&I

D~ii(lAB

Ju'stifcatior;

B
B y

Dist: ibtion I
Availability Z'dus

I Avail andlor
Dist Special

Maygen: A Symbolic Debugger Generation System

by

Christine L. Tsien

Submitted to the Department of Electrical Engineering and Computer Science
on May 7, 1993, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

With the development of high-level languages for new computer architectures comes the
need for appropriate debugging tools as well. One method for meeting this need would be
to develop, from scratch, a symbolic debugger with the introduction of each new language
implementation for any given architecture. This, however, seems to require unnecessary
duplication of effort among developers. Compilation technology has alleviated some du-
plication of effort in the development of compilers. Can similar ideas aid in the efficient
development of symbolic debuggers as well?

Maygen explores the possibility of making debugger development efficient by influencing
the language and architecture development processes. Maygen is a "debugger generation
system," built upon the idea that symbolic debuggers can be divided into three components:
a set of source language interface routines, a set of machine architecture interface routines,
and a language-independent and architecture-independent debugger skeleton. Maygen then
exploits this modularity: First, Maygen precisely defines as well as houses the language-
independent and architecture-independent debugger skeleton. Second, Maygen defines the
protocol for interface interaction among source language developers, machine architecture
developers, and the general-purpose debugger skeleton. Finally, Maygen provides a frame-
work in which the resident debugger skeleton is automatically developed into a stand-alone
symbolic debugger; the resulting debugger is tailored to the specific provisions of a particular
language group and a particular architecture group.

Thesis Supervisor: Thomas F. Knight, Jr., Ph.D.
Title: Principal Research Scientist, Department of Electrical Engineering and Computer
Science

Thesis Supervisor: Alan L. Davis, Ph.D.
Title: Company Supervisor, Hewlett Packard Laboratories

2

To my parents

3

4

Acknowledgments

First, I would like to thank Al Davis for being a great leader and advisor, for understanding

that with high morale and interesting work naturally follows true motivation and quality

performance. (I.e., occasional goof-off days, such as group outings to see Terminator 2 or

watch the Giants, keeps people happy and diligent through subsewquent crunch times.) I

would also like to thank him for his careful reading of my thesis draft. I wish him all the

best with Mayfly as well as his future endeavors.

I would like to thank Tom Knight for agreeing to be my MIT supervisor, for being

positive and supportive of my work even though the scope or focus seemed to change nearly

every time I flew to MIT for a meeting, and for being interested in everything, thus making

him a great resource for a diverse set of questions.

I would like to thank Mike Lemon for his unwavering support and friendship since my

first HP summer in 1989. More recently, I am indebted to him for letting me clutter half

of his disk space with my backups, for his eloquent exposition of abstract machines during

one of my periods of confusion, and for subsequently letting me borrow heavily from that

description for my introductory paragraphs of Section 4.2.

I would like to thank Robin Hodgson for helping to flesh out the preliminary debugger

generation idea, for helping me to understand the Mayfly, and for having done a lot of work

on Maydebug, the guts of which went into much of my Mayfly test case. I also want to

thank the Mayfly group overall for providing a very enjoyable work environment.

Next, thanks go to John Conery for explaining the OPAL system and for having done a

lot of OPAL/OM work, the guts of which went into much of my OPAL and OM test cases.

I would like to thank Bill Dally for being supportive of my medical interests and espe-

cially for signing my registration even when he thought I was taking too many classes.

I would like to thank all of the MEDG members for being my foster group at MIT while

I was finishing Maygen work and for listening to my thesis talk; the talk format contributed

greatly to my subsequent decision on how to structure my written thesis presentation.

5

Of course I also want to thank all of my friends-not only those at MIT, who gave me

much needed and relaxing breaks from work, but also those who have left MIT but still

remain close to me in spirit and in email.

Special thanks go to Jamie: in all of my busiest times, he alone was still able to convince

me to take three to five mini-breaks a day. (It was either that, or spend twice as much time

cleaning up doggy accidents!)

I feel compelled to thank the Association of American Medical Colleges for scheduling

the MCATs to be three weeks before the thesis deadline; had the MCATs been at a different

time, I might not have had as good an excuse for not studying as much as one should.

As always, I am very thankful to my parents and my sister for their continual support,

guidance, patience, interest, and enthusiasm in all of my endeavors.

I wholeheartedly thank God for helping me with all that I do, as well as for allowing

my biggest problem to be having too many choices (along with a flair for indecisiveness).

Last, but definitely not least, I would like to thank Brad Spiers for all of his love,

friendship, laughter, support, and encouragement. I thank him for not lifting an eyebrow at

my cutting coupons and reading grocery store ads in the midst of MCAT studies and thesis

work. I thank him for correcting my almost-clichds and colloquialisms; if it weren't for him,

I'd be flushing out ideas and saying, "Close, but no banana." Finally, I want to thank him

for letting me sign him up for Columbia House Video Club membership (and thus getting

those ten great new movies for a low price!) just when we most needed to work. :]

This paper describes research conducted at Hewlett Packard Laboratories, as part of
the MIT VI-A Internship Program, and at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for this research was provided in part by a
National Science Foundation Graduate Research Fellowship. Support for the laboratory's
artificial intelligence research is provided in part by the Advanced Research Projects Agency
of the Department of Defense under Office of Naval Research contract N00014-91-J-4038.

6

About the Author

Christine Tsien was born on the 28th of November, 1969, in Minneapolis, Minnesota. She
was educated in public schools, graduating valedictorian from Mounds View High School
in Arden Hills, Minnesota, in 1987. With the financial aid of a National Merit Scholarship,
she was able to attend the Massachusetts Institute of Technology, where she majored in
computer science, concentrated in Russian language, and maintained an interest in biology
and medicine. As a sophomore, she was invited to participate in the VI-A program with
Hewlett Packard Laboratories in Palo Alto, California. She was elected to and is a member
of Tau Beta Pi, Eta Kappa Nu, and Sigma Xi, and she served as Vice President and Social
Chair for Eta Kappa Nu during the 1990-91 academic year. She has been a member of
the Society of Women Engineers for six years, during which she served on the Executive
Committee and the Financial Committee for one year each and as Treasurer for two years.
She is also a member of the Association for Computing Machinery and the Biomedical
Engineering Society. She earned her Bachelor of Science degree from the Department of
Electrical Engineering and Computer Science in June, 1991. The author was accepted
into the doctoral program at the Massachusetts Institute of Technology, where she recently
finished her Master of Science degree with the financial support of a National Science
Foundation Graduate Fellowship.

During her years at the Massachusetts Institute of Technology, the author also partic-
ipated in Alpha Phi Omega National Service Fraternity, Figure Skating Club, Freshman
Associate Advising, Tech Square Big Sisters, Chinese Students' Club, and Project Contact.
She was a laboratory teaching assistant in the Biology Department, engaged in research
at the Laboratory for Computer Science and at the Artificial Intelligence Laboratory, and
worked various jobs in West Campus Houses, ARA Food Service, and Hayden Library. She
also volunteered at Mount Auburn, Boston City, and Massachusetts General Hospitals. In
her spare time, she enjoys rollerblading, windsurfing, watching good movies, and playing
with her American Eskimo dog, Jamie.

Her present research interests lie at the intersection of computer science, biology, and
medicine. Her longer term goals are to explore interdisciplinary approaches to solving
problems in the medical field after attaining her Doctor of Medicine degree.

Contents

1 Introduction 12

1.1 Project Overview 13

1.2 Thesis Organization 15

2 Related Work 18

2.1 Multilingual Debugging 18

2.2 Language-independent Debugging 19

2.3 Advantages and Disadvantages 19

3 Canonical Generated Debugger 21

3.1 Overview 21

3.2 Design 24

3.2.1 Debugging Unoptimized Compiled Code 24

3.2.2 Providing Tailored, Traditional Functionality 25

3.2.3 Supporting Extension Commands 26

3.2.4 Supporting Multiprocessors 26

3.3 Advantages 27

4 Generation System Design 28

4.1 Overview 28

4.2 Interface Protocols 31

4.3 Debugger Skeleton 34

7

CONTENTS 8

4.4 Generation Framework 36

5 Prototype Implementation 38

5.1 Overview 38

5.2 Maygen Debugger Featuires 39

5.3 Interface Protocols 39

5.4 Debugger Skeleton 41

5.5 Generation Framework 42

6 Results 43

6.1 Overview 43

6.2 Test Cases .. 44

6.2.1 OPAL and OM 44

6.2.2 C and Mayfly 47

7 Conclusions 53

7.1 Summary 53

7.2 Future Work 54

7.2.1 Maygen Prototype Enhancements 55

7.2.2 Related Areas to Explore 55

A SLI Input File Template 58

B MAI Input File Template 65

C Sample OM Virtual Machine MAI Input File 73

Bibliography 79

List of Figures

1-1 AN ALL-PURPOSE DEBUGGER GENERATION SYSTEM 14

1-2 THE COMPONENTS OF A GENERATED DEBUGGER 14

1-3 INTERRELATIONSHIP AMONG MAYGEN USERS 16

4-1 THE MAYGEN DEBUGGER GWNERATION SYSTEM 29

4-2 THE COMPONENTS CF A MAYGEN GENERATED DEBUGGER 30

9

List of Tables

3.1 CANONICAL MAYGEN DEBUGGER FUNCTIONALITY 22

3.2 ADDITIONAL MAYGEN DEBUGGER FUNCTIONALITY FOR MULTIPROCESSORS 24

4.1 SOURCE LANGUAGE INTERFACE ROUTINES 33

4.2 MACHINE ARCHITECTURE INTERFACE ROUTINES 33

4.3 DEBUGGER SKELETON ROUTINES AVAILABLE TO DEVELOPERS 36

5.1 DEBUGGER FUNCTIONALITY IMPLEMENTED IN PROTOTYPE 40

5.2 DEBUGGER FUNCTIONALITY NOT IMPLEMENTED IN PROTOTYPE 40

6.1 SLI ROUTINES SUPPORTED BY OPAL 44

6.2 SLI ROUTINES NOT SUPPORTED BY OPAL 45

6.3 MAI ROUTINES SUPPORTED BY OM 46

6.4 MAI ROUTINES NOT SUPPORTED BY OM 46

6.5 MAI EXTENSION COMMANDS PROVIDED BY OM 47

6.6 FUNCTIONALITY OF THE GENERATED OPAL DEBUGGER 48

6.7 SLI ROUTINES SUPPORTED BY C 49

6.8 SLI ROUTINES NOT SUPPORTED BY C 49

6.9 MAI ROUTINES SUPPORTED BY MAYFLY 50

6.10 MAI ROUTINE NOT SUPPORTED BY MAYFLY 50

6.11 MAI EXTENSION COMMANDS PROVIDED BY MAYFLY 51

6.12 FUNCTIONALITY OF THE GENERATED C DEBUGGER 52

10

LIST OF TABLES 11

7.1 FUTURE MAYGEN WORK 55

7.2 DEBUGGER GENERATION SYSTEMS: AREAS TO EXPLORE 57

Chapter 1

Introduction

Recent years have seen a surge of new computer architectures as industry and academia work

to develop faster processing power. With the predominance of high-level programming over

machine-level programming as well, the need for debugging tools that use source language

names and notations has increased.' Much effort has been given to automating the phases

of compiler writing in order to simplify high-level language implementation for these new

architectures. Similar efforts at automation have not, unfortunately, been given to the

production of debuggers.

This lack of automation in debugger production can prove expensive in terms of engineer-

ing hours, and thus monetary costs, required for development. Early on in the development

of an experimental computer system, a low-level debugger is needed to evaluate whether the

system is working correctly. After the new computer system is running, each new high-level

language written for the system requires a corresponding high-level debugger because users

want to debug in terms of the symbols and constructs of the source language. One method

for meeting these debugging needs would be to develop from scratch a new debugger for

each new architecture and for each new language implemented for a given architecture.

Unfortunately, writing debuggers is not only tedious but also time consuming.

'The terms "high-level debugging," "source-level debugging," and "symbolic debugging" are used inter-
changeably to mean debugging of programs in terms of their source-level names and constructs.

12

CHAPTER 1. INTRODUCTION 13

A similar problem confronted compiler developers about fifteen years ago. Compilation

technology has since then focused on reducing duplication of effort for various phases of

compiler implementation with considerable success. Most notably, parser generators [Joh75,

MKR79, ASU86, FJ881, such as yacc[Joh75], and scanner generators, such as lex[ASU86,

FJ881, have essentially eliminated the manual creation of parsers and scanners, respectively.

Less known but also important have been efforts at automating the development of code

generators[GG78, DNF79, Bir82, LJG82] and even entire compilers[BBK+82, Ras82, Tof90,

Sto77, Sch88I. Maygen explores the possibility of applying similar ideas of automation to

debugger development.

1.1 Project Overview

This thesis explores a novel approach to providing source-level debugging support through

the development of a "debugger generation system." In general, an all-purpose debugger

generation system might be a tool that takes as input a source language description and a

machine architecture description, 2 and produces as output a fully functional, stand-alone,

language-dependent debugger for the specified architecture. Figure 1-1 depicts such a sys-

tem.

A debugger produced by such a generation system consists of a core debugger skeleton

(SKEL) provided by the generator, a source language interface (SLI) created by the gener-

ator from the source language input, and a machine architecture interface (MAI) created

by the generator from the machine architecture input. Figure 1-2 depicts the components

of such a generated debugger.

The debugger generation system designed in this project is called Maygen.3 Maygen

differs from the described all-purpose generation system in terms of what information is

conveyed from each of the source language and machine architecture developers to the

2Details about the terms "source language" and "machine architecture" can be found in Section 4.2.
3The name "Maygen" originated from an initial project goal of generating various symbolic debuggers for

one specific target architecture, the Mayfly[Dav92]. The project later evolved to encompass various target

architectures as well, though the name Maygen remained.

CHAPTER I. INTRODUCTION 14

Source
_

Language --

Description All-Purpose

Generated
Debugger - Symbolic

Debugger

Machine Generator

Architecture •

Description

Figure 1-1: AN ALL-PURPOSE DEBUGGER GENERATION SYSTEM

Source Language
Interface (SLI)

Generated

Symbolic Debugger (SKEL)
Skeleton

Debugger

Machine Architecture
J Interface (MM)

Figure 1-2: THE COMPONENTS OF A GENERATED DEBUGGER

CHAPTER 1. INTRODUCTION 15

generation system. In the all-purpose system, input consists of source language and target

architecture descriptions that are then used by the generator to automatically create the

needed interface routines. In the Maygen system, the maximal set of routines comprising

each interface is fully specified by Maygen to the users of the generation system; the input

from the users contains information that conveys to Maygen which of the defined interface

routines are available. Once the available interface routines are known, the Maygen system

determines what additional components (parts of the SKEL) are necessary to provide overall

debugger functionality as well as to promote the smooth interaction of the two interfaces

described above. The Maygen system framework maintains the debugger skeleton, interprets

the inputs, and performs the necessary information processing to create a stand-alone,

language-dependent and architecture-dependent debugger.

Figure 1-3 depicts the interrelationship among users of the Maygen system. Maygen

users can be classified into one of two groups. "Phase I" users work with the Maygen

system at debugger generation time, while "Phase H" users work with generated debuggers

at debugger runtime.

A prototype of the Maygen system has been developed and two test sets have been run

to demonstrate the viability of such a system. The test sets include a declarative Prolog-

like source language running on a target virtual machine emulator and an imperative source

language running on a target parallel, message-passing distributed-memory architecture.

1.2 Thesis Organization

The remainder of this thesis describes the advantages and disadvantages of related work,

explains why the Maygen generated debugger is a more feasible approach, and presents the

design, implementation, evaluation, and achievements of the Maygen system.

Chapter 2 begins by briefly examining previous research efforts at providing debugging

support for multiple languages.

Chapter 3 presents the features of the r "ruic4 Maygen debugger in comparison and

in contrast to existing debuggers.

CHAPTER 1. INTRODUCTION 16

Phase I

provides SLI routines Maygen

Generated

Generation - Symbolic

Debugger
Architecture develFramework

Phase II

Generated
Debugger user:
uses generated Symbolic

debugger Dbge
Debugger

..... o.....

Legend: L -I Software

O User
....i............I........I........R.P.......A..

Figure 1-3: INTERRELATIONSHIP AMONG MAYGEN USERS

CHAPTER 1. INTRODUCTION 17

Chapter 4 then describes the Maygen system design, including the source language and

machine architecture interface protocols, the core debugger skeleton, and the generation

framework used to create debuggers.

Chapter 5 elaborates upon the prototype of the Maygen system that was developed, as

well as provides some of the more interesting implementation issues involved.

Chapter 6 then discusses the test cases used to evaluate both the capabilities and the

effectiveness of the generation system prototype.

Finally, Chapter 7 summarizes the Maygen project, presents the author's conclusions,

and speculates upon possible directions for further research in the area of debugger gener-

ation.

Chapter 2

Related Work

The idea of debugger generation, although no such system is known to exist or to ever have

been designed, was proposed by Johnson[Joh78] in 1978. While Johnson's own focus was on

providing a multilingual tool for debugging, he commented that a debugger generation sys-

tem could possibly be an alternative approach to providing source-level debugging support

for multiple languages.

Despite the lack of previous work on debugger generation, two related areas of research

have provided some insight for the Maygen project. Specifically, the areas of multilingual

debugging and language-independent debugging also try to provide debugging support for

multiple languages.

2.1 Multilingual Debugging

Multilingual debugging is a debugging style that permits the debugging of software in which

components have been written in more than one source language[Joh82]. Multilingual

debugging is useful to consider because of some issues that are similar to those of debugger

generation. Specifically, the need to distinguish between language-dependent and language-

independent components of debuggers pertains to both.

Two examples of multilingual debuggers are VAX DEBUG[Bea83] and SWAT[Car831.

18

CHAPTER 2. RELATED WORK 19

VAX DEBUG is the VAX-11 Debugger developed at Digital Equipment Corporation. For a

particular set of supported source languages, VAX DEBUG understands: how symbol names

are composed in the language, how language expressions are interpreted, how and when type

conversions are done in the language, how values in the language are displayed, and how

the language scope rules work. Although VAX DEBUG understands this information for a

defined set of languages, it operates according to the rules of only one language at a time.

VAX DEBUG supports the following languages: assembly, Fortran, Bliss, Basic, Cobol,

Pascal, and PL/I.

SWAT is a source-level debugger developed by Data General Corporation. SWAT

supports five high-level languages, each of which conforms to an agreed upon "Common

Compiler Component Methodology." This methodology defines a common intermediate

language, procedure-calling sequence, and language runtime environment that must be fol-

lowed by each of the supported languages. The languages understood by SWAT are: C,

Cobol, Fortran 77, Pascal, and PL/I.

2.2 Language-independent Debugging

Similar to the idea of multilingual debugging is language-independent debugging. Language-

independent debugging refers to debugging techniques that are independent of any one

particular source language[Joh82]. A debugging system that has dealt specifically with

the issue of language-independence is the RAIDE system[Joh77]. Johnson explains that

a separate debugging language might be desirable. The debugging language created for

the RAIDE system, called Dispel[Joh8l], is designed to aid communication between an

interactive user and a runtime, symbolic debugging system.

2.3 Advantages and Disadvantages

Indeed, these previous systems present approaches to debugging that appear to accommo-

date multiple languages. Such accommodation leads to improved economy of implementa-

CHAPTER 2. RELATED WORK 20

tion as well as increased ease in product maintenance. In addition, these systems offer a

certain amount of functional consistency to the debugger user.

Unfortunately, these systems have several shortcomings. First, they are unable to handle

the peculiarities of any specific language; there is no extension mechanism with which to

cater to the needs of a given particular language. Second, the languages supported by each

of the multilingual debuggers are specified beforehand; to handle another language would

mean having to rewrite the debugger itself. These systems are limited to debugging not just

a pre-defined set of languages, but moreover, only a pre-defined set of semantically similar

languages.

A further fault lies in the language-independent debugging system as well. A user must

first learn a completely separate language, the debugging language, before even being able

to start debugging a program. Once debugging can actually proceed, the user then needs

to worry about the possibility of faulty debugging programs in addition to faulty source

programs.

Admittedly, multilingual and language-independent debugging techniques offer some

gains over single-language debuggers. Nevertheless, the deficiencies in these debugging

techniques are considerable.

Chapter 3

Canonical Generated Debugger

The Maygen debugger tries to maintain the desirable features of multilingual and language-

independent debuggers while also trying to improve upon their shortcomings. This chapter

begins by describing the features of the canonical Maygen generated debugger, proceeds to

explain the motivation behind the chosen design, and then demonstrates how this design is

able to offer more than multilingual and language-independent debuggers.

3.1 Overview

The canonical Maygen debugger generally resembles a typical single-language source-level

debugger for a compiled language in that it offers the "traditional" functionality with which

users are accustomed to debugging programs. The Maygen debugger debugs compiled code

that has not been optimized. It is also expected that the user starts up the Maygen de-

bugger and then runs a program under debugger control. The maximal set of fundamental

debugging facilities that are supported' by a Maygen debugger include: starting, stopping,

single-stepping, and continuing an execution; loading a file; resetting the machine; setting,

clearing, and listing machine-level as well as source-level breakpoints; activating and sus-

1Each of the supported facilities is only available upon satisfaction of specific conditions. See Chapter 4
for details.

21

CHAPTER 3. CANONICAL GENERATED DEBUGGER 22

Table 3.1: CANONICAL MAYGEN DEBUGGER FUNCTIONALITY

Start execution
Stop execution
Continue execution
Single-step execution (following calls)
Single-step execution (not following calls)
Load a file
Reset the machine
Set, clear, list machine-level breakpoints
Set, clear, list source-level breakpoints
Activate breakpoints
Suspend breakpoints
Display and set variable values
Display register values
Trace and untrace variables
Trace and untrace procedures
List traced variables
List traced procedures
List user program labels and symbols
Show current source line
Print information about debugger status
Display list of debugger commands
Repeat previous command
Quit Debugger
Comment (ignored)

pending breakpoints; displaying and setting variable values and register values; tracing and

untracing variables and procedures; listing traced variables and procedures; indicating the

current source line; displaying a list of debugger commands with help information; repeat-

ing the previous command; quitting the debugging session; and adding a comment. The

Maygen debugger functionality is summarized in Table 3.1.

Each command's availability depends upon its semantic correctness in the context of the

particular source language or machine architecture involved, as well as upon the support

provided by both the source language and the machine architecture developers. For example,

CHAPTER 3. CANONICAL GENERATED DEBUGGER 23

a debugger user should not be able to set logic variables in Prolog; thus, the command to set

the value of a variable is not made available in a generated Prolog debugger. In this manner,

each generated debugger is tailored specifically to the particular language and architectilre

in question.

In addition to the fundamental debugging facilities, the Maygen debugger also has a

mechanism for incorporating extension commands that are then fully available to the de-

bugger user. For example, the option to choose whether an execution will proceed in a

breadth-first manner or a depth-first manner is not provided by the canonical Maygen de-

bugger; however, this might be a desirable command to have in a Prolog debugger. A Prolog

system developer, then, can specify this option as an extension command to the Maygen

system, which will then add it to the set of commands available in the generated Prolog

debugger.

Extension conmnands can be specified and provided by the source language developer,

the machine architecture developer, or both. Extensirn commands are of two general fla-

vors. "Independent" extension commands are self-contained in that their functionality does

not depend upon any routines that might not be available, e.g., from either the source lan-

guage interface routine set or the machine architecture interface routine set. "Dependent"

extension commands, on the other hand, are not self-contained in that their functionality,

and thus their availability to the debugger user, depends upon at least one of the routines

from either the source language interface routine set or the machine architecture interface

routine set. 2

Finally, the canonical Maygen debugger understands that not all machines are uniproces-

sors; the Maygen debugger understands that a machine may have mor, than one processing

node. In such cases, the Maygen debugger operates on a single node at a time. The debugger

user has the ability to determine the total number of processing nodes present, determine

2 Either type of extension comma:id-iihdependent or dependent-can use routines explicitly provided by
the debugger skeleton if desired. (See Chapter 4 for d: tails.) Since the availability of an extension command
does not hinge upon the availability of routines provided by the debugger skeleton (because the latter are
always available), debugger skeleton routines do not play a role in the classification of extension commands
into one of the two categories.

CHAPTER 3. CANONICAL GENERATED DEBUGGER 24

Table 3.2: ADDITIONAL MAYGEN DEBUGGER FUNCTIONALITY FOR MULTIPROCESSORS

Display number of nodes present and available
Show current node
Switch to a different node
Change number of nodes available

the number of nodes available, determine which node is being debugged, switch from the

current node being debugged to a different node, and change the number of nodes available.

Maygen's default mode of execution for multiprocessors is that which is provided by the

machine architecture developer. Table 3.2 summarizes the additional debugger functionality

provided by Maygen for multiprocessor architectures.

3.2 Design

3.2.1 Debugging Unoptimized Compiled Code

The canonical Maygen debugger was developed to work on unoptimized, cnmpiled code

rather than on optimized or interpreted code. Although using an interpreter as the base of a

debugger might be beneficial because of how well it supports interactive debugging[Mak91],

the approach is more complicated. In addition to a debugger skeleton, the generation

system would need to maintain an interpreter skeleton as well. This interpreter skele-

ton either would need to interpret a broad class of source languages, which is currently

infeasible [Joh77], or would netd to be developed by the generation system into a language-

dependent, architecture-dependent interpreter. The generation of such an interpreter might

itself be an interesting research problem, but is tangential to the issue of debugger genera-

tion.

Furthermore, Troisi[Tro82] points out that interpreted code may run differently than

compiled code; thus, a debugger based upon an interpreter may not illuminate the problem

CHAPTER 3. CANONICAL GENERATED DEBUGGER 25

area of the source code. In addition, a debugger based upon an interpreter might suffer

from significantly decreased execution speed[Edw75].

Likewise, the issue of debugging optimized code is also tangential to the primary concern

of how to automatically create a symbolic debugger.3 Thus, the canonical Maygen debugger

expects that the code a user loads and tberefore wants to debug is unoptimized. Once such

code has been determined to be correct, then the user can explore performance issues.

3.2.2 Providing Tailored, Traditional Functionality

The canonical Maygen debugger offers a variety of traditional debugging commands to the

user. Such a design was chosen not only because users are more accustomed to this method

of debugging and thus can have less startup time learning how to use a Maygen debugger,

but also because users would be provided with the essentials of a runtime debugging system,

which are the ability to set breakpoints and examine values within the program being

debugged[Bro79, Joh8l].

Some traditional debugging commands, such as starting an execution, make sense for

essentially all languages. The relevance of some other commands, however, are not nec-

essarily immediately apparent. For example, setting a breakpoint makes perfect sense in

a language such as C or Pascal; but, what does it mean to set a breakpoint in Prolog?

It might, for example, mean the ability to temporarily stop execution at any of the four

ports of the multiported box model for Prolog execution[SW90]. Another example is the

tracing of variables. This might make good sense in an imperative language, but what does

it mean in a declarative one? An example of how the tracing of variables could be used

in a declarative language is to follow clauses that match (are true) for a particular search.

In cases such as the two described, it is left up to the language developer or architecture

developer to decide in what manner each supported traditional debugging command can be

best exploited for debugging of the given language on the given architecture.

3 See Section 7.2.2 for more details.

CHAPTER 3. CANONICAL GENERATED DEBUGGER 26

3.2.3 Supporting Extension Commands

Admittedly, not all of the traditional debugging commands are necessarily applicable for all

source languages or all machine architectures. For this reason, the Maygen debugger might

only provide a subset of the traditional commands, depending on the specific language and

architecture in question. That is, the Maygen debugger is specifically designed to be capable

of having a command set tailored to the target language and architecture.

This tailoring of the Maygen debugger's command set goes beyond simply deleting ir-

relevant or inapplicable traditional debugging commands. Such a system would be not only

too limiting for the extremely unconventional target language and/or architecture, but also

not good enough for a more conventional but slightly different target language and/or ar-

chitecture. Accordingly, the Maygen debugger is designed to support extension commands.

The extension commands enable language and architecture developers to extend the basic

command set of a Maygen debugger to include any additionally desired functionality that

is potentially highly-specific for that particular language or architecture.

3.2.4 Supporting Multiprocessors

Although the target architecture for Maygen might be a parallel one, the focus of this

project is on developing a method for generating debuggers rather than on determining the

best way to implement a parallel debugger. Thus, Maygen debuggers have been designed to

deal only with simple notions of parallelism, such as knowing about the existence of multiple

processing nodes. A Maygen debugger operates on one processing node at a time and can

switch from one node to another upon the user's request. These capabilities allow for more

meaningful debugging on a multiprocessor than possible from a debugger with absolutely no

knowledge of multiple nodes. Maygen generated debuggers do not, however, address more

complex parallelism issues, such as the monitoring of interprocess communication. Such

issues, although potentially beneficial, would tend to detract from the primary concern of

the project.

CHAPTER 3. CANONICAL GENERATED DEBUGGER 27

3.3 Advantages

The more obvious advantages of using Maygen debuggers over traditional, single-language

debuggers are similar to the advantages attributed to the use of multilingual or language-

independent debugging techniques. First, Maygen debuggers still present a certain degree

of functional consistency to the debugger user, resulting in less learning overhead. Second,

Maygen debuggers are cheap to build since they require little work on the part of language

developers and architecture developers compared to the effort needed to create debuggers

from scratch. Finally, maintenance is simplified because the driving engine of the debugger

is similar from one Maygen debugger to the next.

'hile Maygen debuggers share the advantages of multilingual and language-independent

debugging systems over traditional, single-language debuggers, Maygen debuggers addi-

tionally compensate for the deficiencies inherent in multilingual and language-independent

systems. Maygen debuggers are flexible; they can be tailored to the specific needs and

peculiarities of different languages and architectures. This flexibility comes in part from

the selective availability of the supported debugging routines. More importantly, though,

this flexibility comes from the system's allowance of and support for extension commands.

These features taken together result in a system capable of handling semantically differ-

ent languages. Furthermore, Maygen debuggers can be generated for more than just a

pre-defined, limited set of languages.

How is it that the Maygen debugger can be so flexible? The answer lies in the fact that

it is a generated debugger, that it is generated according to the specifics of each particular

language and each particular architecture. This is made possible through the Maygen

generation system.

Chapter 4

Generation System Design

4.1 Overview

The Maygen system consists of three major components: a set of interface protocols, a

debugger skeleton, and a generation framework. The protocols specify the exact nature of

the interface routines that promote smooth communication between the debugger skeleton

and the rest of the programming environment.1 The routines that are available for a given

debugger to be generated are conveyed by way of input files to the generation framework.

The generation framework, housing the debugger skeleton, processes the input data and

produces a stand-alone, language-dependent and architecture-dependent debugger.

Figure 4-1 portrays the components of the Maygen system and how they are interrelated,

while Figure 4-2 shows the pieces of a Maygen generated debugger.

The Maygen system was dtsig:;'.ed in this manner in order to have the capability of

producing a debugger that is flexi,•e, in terms of handling very different inputs, yet prac-

tical, in terms of providing large savings to language and architecture developers. Since

interpreter-based debuggers have some intrinsic problems, the debugging of compiled code

was chosen as the basis for Maygen. The decision to have a generation system at all evolved

'The "rest of the programming environment" refers to the "source language" and "machine architecture"
These are explained in detail in Section 4.2.

28

CHAPTER 4. GENERATION SYSTEM DESIGN 29

SLI routines MAI routines

Interface Protocols

SLI

Input Generation

File
Framework

Generated

<
Debugger

Input =Debuger

File Skeleton

Figure 4-1: THE MAYGEN DEBUGGER GENERATION SYSTEM

CHAPTER 4. GENERATION SYSTEM DESIGN 30

from MAI

Generated Debugger Skeleton
Symbolic Debugger ---

from SLI

Figure 4-2: THE COMPONENTS OF A MAYGEN GENERATED DEBUGGER

from the knowledge that non-generated debuggers, such as multilingual debuggers, lack the

flexibility needed to support an arbitrary number of language systems as well as to handle

semantically different language systems. On the one hand, the generation aspect, tailoring

ability, and extension mechanism of the Maygen system make canonical Maygen debuggers

flexible. On the other hand, the core debugger skeleton along with the automatic processing

of it into a generated debugger make canonical Maygen debuggers practical.

An alternative method that was considered for achieving the dual goals of flexibility and

practicality was to add debugging constructs to a source file in a preprocessing-type step.

Preprocessors have the advantage that the compiler of the source language to be debugged

need not be modified[Edw75]. This method, however, seemed to be extremely limiting in

terms of what debugging capabilities a debugger user would have, as well as in terms of

what languages and systems could actually be handled effectively.

CHAPTER 4. GENERATION SYSTEM DESIGN 31

4.2 Interface Protocols

An important aspect of developing the Maygen system is deciding upon the interaction of

the Maygen debugger with the rest of the world. Some programming languages employ the

notion of an abstract machine, or virtual machine, with which to serve conceptual2 and/or

implementational3 purposes. When this is the case, the high level aspects of the abstraction

could be exploited for the purposes of debugging. An example is the modification of the

ports of the Prolog box model to support debugging[SW90].

Conventional languages such as C and Fortran do not really have abstract machines

with which to visualize their execution. For example, in a Unix system[MM83], an object

file produced by the C compiler executes as just another process running under the Unix

operating system. Conceptually, one might visualize that process having a certain amount of

memory allocated to it and have a notion of data and instructions residing in that memory,

as well as a "location counter" that indicates the current instruction being executed. Clearly,

such a mental model of program execution is down near the level of the operating system

and machine architecture on which the process is running.

The Maygen system adopts an intermediate position toward debuggers that attempts

to take advantage of higher levels of abstraction when available, but that can be used for

lower-level conventional programs as well. The Maygen system separates the source program

from the evaluation environment.

Accordingly, the two interfaces to the Maygen debugger are the source program and

the evaluation environment. The interface to the source language is fittingly referred to as

the Source Language Interface (SLI). The interface to the evaluation environment is less

appropriately referred to as the Machine Architecture Interface (MAI); this interface might

2As a conceptual technique, the abstract machine allows a high level way to think about the execution of
a program. This capability is especially useful when the programming language contains non-trivial control
mechanisms such as Prolog's unification or Snobol's pattern matcher.

3As an implementation technique, the abstract machine can serve as a specification that describes details
of a particular algorithm, such as a unifier or pattern matcher, used to implement the language. In addition,
the abstract machine can serve as an implementation prototype, as in the Lisp functions Eval and Apply,
which define the complete Lisp evaluator in just a few lines of Lisp code.

CHAPTER 4. GENERATION SYSTEM DESIGN 32

encompass not only the machine architecture, but also a runtime system, an operating

system, an abstract machine, or a combination.

The interface protocols specify the exact nature of the routines that are used by the

core debugger to interact with the source program and the architecture. 4 Each interface

protocol can be thought of as the set of routines that comprise the interaction between the

core debugger and source program, or between the core debugger and machine architecture.

The Source Language Interface routines are provided by a language developer, while the

Machine Architecture Interface routines are provided by a system developer.

Each interface consists of approximately fifteen routines; these translate to the supported

functionality of a generated debugger. There exists a minimal subset of routines that are

required of the Source Language Interface and of the Machine Architecture Interface in

order for a working debugger to be generated. With the provision of this minimal subset,

Maygen can automatically create a low-level debugger. With the provision of increasingly

more Source Language Interface and Machine Architecture Interface routines, Maygen can

create symbolic debuggers with increasingly larger amounts of functionality. These sets of

interface routines are experimentally derived.

Table 4.1 lists the routines constituting the Source Language Interface as specified by

the current Maygen design. Similarly, Table 4.2 lists the routines contained in the Machine

Architecture Interface as specified by the current Maygen design.

The interface protocols not only specify the routines that should be provided, but also

the format in which such information is conveyed to the generation framework. The input

to the generation framework consists of two text files, one for information about the Source

Language Interface and the other for information about the Machine Architecture Interface.

The Source Language Interface input fie contains: a listing of the Source Language Interface

routines with specification of whether or not each is available, the name of the source

language, the location and name of a library containing the Source Language Interface

4 Henceforth, the "machine architecture" and the "architecture" refer to the evaluation environment,
except when specified otherwise.

CHAPTER 4. GENERATION SYSTEM DESIGN 33

Table 4.1: SouRcE LANGUAGE INTERFACE ROUTINES

Initialize SLI
Map procedure to object line
Map procedure beginning to object line
Map procedure ending to object line
Trace procedure
Map source line to object line
Read in symbols
Print labels
List procedures
Print symbols
Display text of current source line
Untrace procedure
Process initial debugger arguments
Print SLI information

Table 4.2: MACHINE ARCHITECTURE INTERFACE ROUTINES

Initialize MAI
Is program loaded?
Install machine breakpoint
Continue program
Uninstall machine breakpoint
Set machine breakpoint on a procedure
Clear machine breakpoint on a procedure
Read in program
Print register contents
Run program
Step, following procedure calls
Step, not following procedure calls
Reset machine
Process initial debugger arguments
Print MAI information
Change current processing node
Change number of available nodes

CHAPTER 4. GENERATION SYSTEM DESIGN 34

routines, and information about each extension command desired by the language developer.

This extension command information includes the total number of extension commands

supported by the language developer as well as details about each extension command.

These details include: the name of the command, the declaration used to indicate it is an

externally defined procedure, the invocation of the command with its arguments, and a list

of Source Language Interface and Machine Architecture Interface routines upon which the

proper functioning of the extension command depends.5

Similarly, the Machine Architecture Interface input file contains: a listing of the Machine

Architecture Interface routines with specification of whether or not each is available, the

name of the architecture or abstract machine, the location and name of a library containing

the Machine Architecture Interface routines, and information about each extension com-

mand desired by the machine developer. The information for these extension commands is

exactly analogous to that of the extension commands for the Source Language Interface.

The Machine Architecture Interface input file additionally contains information about how

many processing nodes are present as well as how many processing nodes are available in

the target architecture.

An example of a Source Language Interface input file template, which can be filled in

by a language developer, can be found in Appendix A. Appendix B contains an example of

a Machine Architecture Interface input file template.

4.3 Debugger Skeleton

The debugger skeleton consists of the components of a symbolic debugger that have been

determined to be language-independent and architecture-independent. These components

have been grouped together to form the core of a debugger, hence debugger skeleton, which

the Maygen system uses as the backbone with which to create Maygen debuggers.

The debugger skeleton can be thought of as providing the glue necessary for coherently

'For independent extension commands, this list will be empty.

CHAPTER 4. GENERATION SYSTEM DESIGN 35

sticking together the interface routines. More accurately, the debugger skeleton is several

files of code, some of which contribute directly (unchanged) to the code of a generated

debugger, and some of which are either supersets of or incomplete fragments of code that

will be modified by the generation framework into code that will then be part of a generated

debugger. The final output files include a makefile with which the user can make the newly-

generated debugger from its source code.

More descriptively, the debugger skeleton consists of debugger components such as the

debugger user interface, command loop driver, and grungy initialization and maintenance

routines, e.g., for keeping track of tracing. The debugger user interface can range from a

simple textual interface to a much more elaborate graphical user interface. This interface

need only be written once and then can be used for each subsequent Maygen debugger.

An example of a grungy maintenance job is the breakpointing facility: coordinating the

setting (and checking for duplicates), clearing (and checking for validity), keeping track,

listing, installing, uninstalling, activating, and suspending of machine-level and source-level

breakpoints.

Each debugger command supported by the debugger skeleton is affiliated with certain

Source Language Interface and Machine Architecture Interface routines upon which its func-

tionality depends. A given, supported debugger command is only available if the routines

upon which it depends are made available by the language and/or architecture developers.

For example, the command that allows a debugger user to set a breakpoint on a source

line depends upon one Machine Architecture Interface routine (install machine breakpoint)

and one Source Language Interface routine (map source line to object line). If either of

these routines is not supported, then the source-level breakpoint setting command is un-

available in the subsequently generated debugger. The debugger commands supported by

the debugger skeleton are identical to those previously described in Table 3.1.

As mentioned previously, a few debugger skeleton routines are explicitly provided to

aid Maygen system users. Language or architecture developers can freely call these rou-

tines from within either extension commands or Interface routines. The debugger skeleton

CHAPTER 4. GENERATION SYSTEM DESIGN 36

Table 4.3: DEBUGGER SKELETON ROUTINES AVAILABLE TO DEVELOPERS

Install breakpoints
Uninstall breakpoints
Check whether breakpoint address already exists
Add procedure to list of procedure breakpoints
Remove procedure from list of procedure breakpoints
Add machine address to list of machine breakpoints
Remove machine address from list of machine breakpoints

routines supported in this manner are listed in Table 4.3.

4.4 Generation Framework

This section describes the overall framework used by the Maygen system to create a func-

tional debugger. This framework serves as the driving engine for accepting input informa-

tion about the Source Language and Machine Architecture Interfaces, for translating the

input into which debugger commands will be available, and for appropriately modifying

and appending the debugger skeleton to make it a stand-alone debugger.

The generation framework understands the format of the input files and thus can iead

and interpret the information in the input. The generation framework also houses, or more

accurately, keeps track of, all the pieces of the debugger skeleton. The framework knows

which pieces are to be left intact to become part of a generated debugger as wel as which

need to be either augmented or chopped and spliced.

The generation framework decides, based upon which Source Language Interface and

Machine Architecture Interface routines are known to be available, what components will

go into the debugger to be generated and how these components should be put together to

make a working unit. The framework processes the input information to determine which

debugger commands will comprise the command set of the debugger to be generated. These

command names are then incorporated into the "help list" available to debugger users, while

CHAPTER 4. GENERATION SYSTEM DESIGN 37

the code that implements these commands are inccrporated into the source code files that

compile into the functional debugger. Finally, tht; generation framework outputs all the

necessary code files and a makefile for the new Maygen debugger.

The framework is designed to perform at generation time all of the interpretation and

processing necessary for a given debugger to be generated. By performing all input interpret-

ing and processing during debugger generation, Maygen debuggers can avoid unnecessary

runtime inefficiency.

Chapter 5

Prototype Implementation

The Maygen system design encompasses more than does the prototype that has been imple-

mented thus far. This chapter describes the environment in which the system was developed

and the scope of the prototype, as well as presents some of the more interesting implemen-

tational details.

5.1 Overview

The experiment was carried out using the equipment and facilities of Hewlett Packard

Laboratories. A single-processor workstation HP9000/840 running HP-UX 7.0, Hewlett

Packard's version of UNIX, was used for the development of the debugger generation system.

The prototype Maygen system is written in the C language.

The prototype generation system consists of the Source Language Interface and Machine

Architecture Interface protocols with routines defined and input file formats specified, an

implemented subset of the designed debugger skeleton, and a functional generation frame-

work that handles the existing debugger skeleton and inputs.

38

CHAPTER 5. PROTOTYPE IMPLEMENTATION 39

5.2 Maygen Debugger Features

The canonical Maygen debugger of the prototype generatiun system supports most of the

functionality supported by that of the designed system. These commands are summarized

in Table 5.1. The commands that are not supported in this implementation are listed in

Table 5.2. An additional note is that the support for tracing and untracing of procedures

is currently implemented as the setting and clearing of breakpoints on procedure names.

Tracing of procedures could be made more elaborate by not only breaking when a procedure

is reached, but also automatically displaying the values of the procedure's arguments upon

invocation and displaying any return value upon exit.

As in the design, each debugging command's availability depends upon its semantic

correctness in the context of the particular source language or machine architecture in-

volved, as well as upon the support provided by both the source language and the machine

architecture developers.

The prototype canonical Maygen debugger is able to support one of the two flavors

of extension commands described in Section 3.1. Independent extension commands are

currently incorporated in the prototype, whereas dependent extension commands are not.

Finally, the prototype Maygen debugger operates on a single node at a time, but under-

stands that there might be more than one processor in the target architecture. Thus, when

the target architecture has multiple nodes, the generated Maygen debugger allows the user

to: determine the total number of nodes present, determine how many nodes are available,

find out which node is being debugged, switch between nodes, and change the number of

nodes available. This functionality is identical to that designed, which is summarized in

Table 3.2.

5.3 Interface Protocols

The Source Language Interface and Machine Architecture Interface are implemented as

described in Section 4.2, having the goal of separating the source program from the evalua-

CHAPTER 5. PROTOTYPE IMPLEMENTATION 40

Table 5.1: DEBUGGER FUNCTIONALITY IMPLEMENTED IN PROTOTYPE

Start execution
Stop execution
Continue execution
Single-step execution (following calls)
Single-step execution (not following calls)
Load a file
Reset the machine
Set, clear, list machine-level breakpoints
Set, clear, list source-level breakpoints
Activate breakpoints
Suspend breakpoints
Display register values
Trace and untrace procedures
List user program labels and symbols
Show current source line
Print information about debugger status
Display list of debugger commands
Repeat previous command
Quit Debugger
Comment (ignored)

Table 5.2: DEBUGGER FUNCTIONALITY NOT IMPLEMENTED IN PROTOTYPE

Display and set variable values
Trace and untrace variables
List traced variables
List traced procedures

CHAPTER 5. PROTOTYPE IMPLEMENTATION 41

tion environment. The specified routines comprising the Source Language Interface are the

same as those listed in Table 4.1; likewise, the specified routines comprising the Machine

Architecture Interface are the same as those enumerated in Table 4.2.

The input file formats, which the Maygen prototype uses, are identical to those pre-

scribed by the interface protocol design of Section 4.2. The sample Source Language In-

terface input file template located in Appendix A is the actual input file template used for

the prototype's language test cases. Similarly, the sample Machine Architecture Interface

input file template located in Appendix B is the actual input file template used for the

prototype's architecture test cases.

5.4 Debugger Skeleton

The prototype debugger skeleton consists of components of a symbolic debugger that are

language-independent and architecture-independent, as designed. However, the prototype

debugger skeleton does not encompass as much basic supported functionality as does the

designed debugger skeleton. Also, the debugger user interface is a purely textual one.

The command loop driver is based upon a C language switch statement that switches

on the interactive user's typed command. This implementation was chosen for relative

efficiency in carrying out the desired command and for ease in tailoring the appropriate

code files to the inputs.

The debugger skeleton consists of five files that contribute unchanged to a generated

debugger's source code and six fies that are modified into fies that are then directly part

of a generated debugger's source code. The files that contribute unchanged contain source

code files that implement breakpoints, essential debugger initializations and driver routines,

and input/output routines. These fies also include header files that list Source Language

Interface, Machine Architecture Interface, and debugger skeleton routines.

The files that need to be modified before becoming part of a generated debugger are

the makefile, "cases" fie, "filler" file, extension command file, "miscellaneous" fie, and

"debugger help list" file. The "cases" file is a superset of the code needed to decide what

CHAPTER 5. PROTOTYPE IMPLEMENTATION 42

to perform for each command. When the prerequisite routines are available for a given

debugger command, that command will be associated with code that performs the actual

command; when the prerequisite routines are not available, however, that command will

be associated with code that relays to the user the unavailability of the invoked command.

In addition, each command is accordingly added or not added to the debugger help list in

the "debugger help list" file. Thus, when a user calls up a help list of debugger commands,

those commands that are not available, due to lack of sufficient support from either the

language or architecture developer, will not be included in the list. The "filler" file is created

by Maygen to account for all of the Source Language Interface and Machine Architecture

Interface routines that are not provided as inputs. Maygen creates "filler" routines to satisfy

the compiler's checks, knowing that these dummy routines will not actually be called. The

extension command file is created by Maygen to handle the calling of appropriate extension

commands upon a user's invocation of such commands. Finally, the "miscellaneous" file is

created by Maygen to hold two architecture-dependent definitions as well as routines for

printing information upon debugger startup and exit.

5.5 Generation Framework

The prototype generation framework is as described in Section 4.4. This generation frame-

work understands the input fie formats, reads and interprets the input files, accordingly

performs the actual modifying of the debugger skeleton files described in the previous sec-

tion, and outputs all necessary source code to create a new debugger.

Chapter 6

Results

This chapter discusses the test cases used to evaluate the prototype generation system, and

hence the Maygen system design itself.

6.1 Overview

The goal for choosing the test cases was to select domains that are quite different in order

to show the flexibility that Maygen has in comparison to existing systems for providing

debugging support to multiple programming environments. Each test set' is comprised of

a source language that conforms to the Source Language Interface protocol (in terms of

interface routines and Maygen input file), and a machine architecture that conforms to the

Machine Architecture Interface protocol (in terms of interface routines and Maygen input

file).

Two such test sets have been run through the Maygen system. The two source languages

and their evaluation environments are: a declarative language, OPAL, running on the OM

virtual machine, and an imperative language, C, running on the Mayfly parallel architecture.

By generating a symbolic debugger for both a declarative language and an imperative

language, Maygen demonstrates its ability to handle semantically-different languages.

'A "test set" consists of both a source language "test case" and a machine architecture "test case."

43

CHAPTER 6. RESULTS 44

Table 6.1: SLI ROUTINES SUPPORTED BY OPAL

Initialize SLI
Map procedure to object line
Map procedure beginning to object line
Read in symbols
Print labels
Print symbols
Print SLI information
Process initial debugger arguments

6.2 Test Cases

6.2.1 OPAL and OM

OPAL, the Oregon Parallel Logic language, is a Prolog-like language developed at the

University of Oregon[Con9O, Con9l, Con92]. OPAL is based on the AND/OR Process

Model[Kac90], which is an abstract model for parallel logic programs. The AND/OR Pro-

cess Model has an operational semantics defined by asynchronous objects that communicate

entirely by messages.

OPAL programs are compiled into the instruction set of the OPAL Machine, or OM. The

OM is a virtual machine similar to the Warren abstract machine[War83] for standard Prolog

implementations. The difference is that the OM virtual machine is designed for programs

that execute according to the AND/OR Process Model on nonshared memory multiproces-

sors. The version of the OM virtual machine used for this test set runs on a uniprocessor

UNIX workstation; it does not exploit AND or OR parallelism in this implementation.

The OPAL language test case supports eight out of the fourteen Source Language In-

terface routines specified by the Maygen prototype and provides no extension commands.

The routines supported by OPAL are summarized in Table 6.1, while those that are not

supported are listed in Table 6.2.

The OM virtual machine test case supports fifteen out of the seventeen Machine Archi-

CHAPTER 6. RESULTS 45

Table 6.2: SLI ROUTINES NOT SUPPORTED By OPAL

Map procedure ending to object line
Trace procedure
Map source line to object line
List procedures
Display text of current source line
Untrace procedure

tecture Interface routines specified by the Maygen prototype. Additionally, the OM test

case provides twelve independent extension commands.

The OM virtual machine supports all of the Machine Architecture Interface routines

except the two routines specific to multiprocessors since the OM implementation is for a

uniprocessor. Tables 6.3 and 6.4 summarize those routines supported and not supported,

respectively, by the OM virtual machine.

The extension commands provided by the OM virtual machine provide the debugger

user with the capabilities to choose between: searching for all solutions or for just one

solution, performing a breadth-first or a depth-first search, executing in quiet mode or not,

tracing processes or not during execution, tracing instructions or not during execution, and

displaying registers symbolically or not. The extension commands also enable the user to

print sections of object code, sections of the heap being used by the OM virtual machine,

message or process information, queue contents, and a process tree for the execution. These

additional features are summarized in Table 6.5. A sample OM Machine Architecture

Interface input file can be found in Appendix C.

The Maygen generation framework accepted the input files of the described test set

and produced a symbolic debugger for OPAL running on the OM virtual machine. The

debugger commands supported by the generated OPAL debugger are listed in Table 6.6

The OPAL Source Language Interface input fie and the OM Machine Architecture

Interface input fie were tested to have varying numbers of interface routines available to

CHAPTER 6. RESULTS 46

Table 6.3: MAI ROUTINES SUPPORTED BY OM

Initialize MAI
Is program loaded?
Install machine breakpoint
Continue program
Uninstall machine breakpoint
Set machine breakpoint on a procedure
Clear machine breakpoint on a procedure
Read in program
Print register contents
Run program
Step, following procedure calls
Step, not following procedure calls
Reset machine
Print MAI information
Process initial debugger arguments

Table 6.4: MAI ROUTINES NOT SUPPORTED BY OM

Change current processing node
Change number of available nodes

CHAPTER 6. RESULTS 47

Table 6.5: MAI EXTENSION COMMANDS PROVIDED By OM

Toggle all-solutions
Toggle breadth-first search
Toggle quiet mode
Toggle process trace
Toggle instruction trace
Toggle symbolic register display
Print code
Print heap
Print message information
Print process information
Print queue contents
Print process tree

Maygen. The supported functionality of each resulting OPAL debugger variant was checked

to ascertain that the debuggers changed accordingly. These generated OPAL debugger

variants were then tested on a suite of OPAL programs to verify their correctness.

6.2.2 C and Mayfly

The language of the second test set is C, the familiar, imperative language developed by

Ritchie[KR88, KW91]. C is a relatively low-level, general-purpose programming language.

While C provides data types and fundamental control-flow constructions such as looping

and decision making for single-threaded control flow, it does not provide built-in higher-

level mechanisms such as input/output facilities or operations on composite objects such as

lists and arrays.

Compiled C programs are processed by the Mayfly architecture[Dav92]. The Mayfly,

developed at Hewlett Packard Laboratories, serves as a back-end processor for a Hewlett

Packard Series 800 workstation. The Mayfly is a scalable, general-purpose parallel pro-

cessing architecture; it is a distributed memory machine with communication supported by

message passing.

CHAPTER 6. RESULTS 48

Table 6.6: FUNCTIONALITY OF THE GENERATED OPAL DEBUGGER

Print help information
Repeat previous command
Activate breakpoints
Set breakpoint on object line
Set procedure breakpoint (trace procedure)
Continue from breakpoint or step
Delete breakpoint on object line
Delete procedure breakpoint (untrace procedure)
Read in compiled user program
Display general registers
Print information about debugger status
List breakpoints
List user program labels
List user program symbols
Quit debugger
Run program
Single step (follow calls)
Single step (do not follow calls)
Suspend breakpoints
Reset machine to startup state
Comment (ignored)
Execute an extension command:
- Toggle all-solutions
- Toggle breadth-first search
- Toggle quiet mode

- Toggle process trace
- Toggle instruction trace
- Toggle symbolic register display
- Print code
- Print heap
- Print message information
- Print process information
- Print queue contents
- Print process tree

CHAPTER 6. RESULTS 49

Table 6.7: SLI ROUTINES SUPPORTED By C

Initialize SLI
Map source line to object line
Map procedure to object line
Map procedure beginning to object line
Map procedure ending to object line
List procedures
Read in symbols
Process initial debugger arguments
Print SLI information

Table 6.8: SLI ROUTINES NOT SUPPORTED By C

Trace procedure
Untrace procedure
Print labels
Print symbols
Display text of current source line

The C language test case supports nine out of the fourteen Source Language Interface

routines specified by the Maygen prototype and provides no extension commands. The

routines supported by C are summarized in Table 6.7, while those that are not supported

are listed in Table 6.8.

The Mayfly architecture test case supports sixteen out of the seventeen Machine Archi-

tecture Interface routines specified by the Maygen prototype. The Mayfly test case supports

all of the Machine Architecture Interface routines except execution stepping that does not

follow procedure calls. Tables 6.9 and 6.10 summarize those routines supported and not

supported, respectively, by the Mayfly test case.

Additionally, the Mayfly test case provides three independent extension commands that

CHAPTER 6. RESULTS 50

Table 6.9: MAI ROUTINES SUPPORTED By MAYFLY

Initialize MAI
Is program loaded?
Install machine breakpoint
Continue program
Step, following procedure calls
TTninstall machine breakpoint

Set machine breakpoint on a procedure
Clear machine breakpoint on a procedure
Read in program
Print register contents
Run program
Reset machine
Process initial debugger arguments
Print MAI information
Change current processing node
Change number of available nodes

Table 6.10: MAI ROUTINE NOT SUPPORTED By MAYFLY

Step, not following procedure calls

give users the capability to select which CPU of the current processing node to debug. Each

Mayfly processing node has two CPUs: the Message Processor (MP) and the Execution Pro-

cessor (EP). The Mayfly extension commands provide the debugger user with the following

capabilities: to select the MP of the current node for debugging, to select the EP of the

current node for debugging, and to determine which CPU is the current (being debugged)

CPU of a given Mayfly processing node. These additional features are summarized in Table

6.11.

The Maygen generation framework accepted the input files of the described test set

CHAPTER 6. RESULTS 51

Table 6.11: MAI EXTENSION COMMANDS PROVIDED BY MAYFLY

Select MP of current node
Select EP of current node
Determine which CPU is current CPU

and produced a C debugger for the Mayfly. The debugger commands supported by the

generated C debugger are listed in Table 6.12

The C Source Language Interface input file and the Mayfly Machine Architecture In-

terface input file were tested to have varying numbers of interface routines available to

Maygen. The resulting C debugger variants were inspected to ensure that their set of

supported functionality changed accordingly. As observed for the OPAL/OM test set, the

supported functionality of each resulting generated C debugger also correctly reflected the

changed Maygen inputs.

Due to logistical difficulties, 2 the generated C debugger variants were "tested" by closely

watching the commands attempted to be written to the Mayfly monitor, the software that

connects the Mayfly architecture with its front-end workstation. Interfacing to this monitor

is the Mayfly's debugger library. Normally, any debugger for the Mayfly calls basic routines

from this debugger library. The debugger library routines, which normally communicate

directly with the Mayfly via the monitor program, were replaced during testing with verbose

stubs. Attempted command writes to the monitor from generated C debugger variants were

then compared with the attempted command wrines of similar debugging commands invoked

from an existing, tested debugger for the Ii .yjly.

'The Mayfly architecture can only be used locally because its software currently does not support remote
access. Maygen work, however, was completed 3000 miles from the residence of the Mayfly.

CHAPTER 6. RESULTS 52

Table 6.12: FUNCTIONALITY OF THE GENERATED C DEBUGGER

Print help information
Repeat previous command
Activate breakpoints
Set breakpoint on source line
Set breakpoint on object line
Set breakpoint at procedure beginning
Set breakpoint at procedure exit
Set procedure breakpoint (trace procedure)
Continue from breakpoint or step
Delete breakpoint on object line
Delete breakpoint on source line
Delete procedure breakpoint (untrace procedure)
Read in compiled user program
Display general registers
Print information about debugger status
List breakpoints
List procedures
List traced procedures
Quit debugger
Run program
Single step (follow calls)
Suspend breakpoints
Reset machine to startup state
Comment (ignored)
Execute an extension command:
- Select MP of current node
- Select EP of current node
- Determine which CPU is current CPU
Execute a multinode command:
- Change processing nodes
- Determine current number of nodes
- Determine current node

Chapter 7

Conclusions

This chapter summarizes the Maygen project, presents some conclusions about debugger

generation in general and the Maygen approach in specific, and suggests areas for further

research.

7.1 Summary

The ability to provide debugging support for multiple languages is an important one because

of today's demand for high-level debuggers to accompany high-level languages.

Two previous approaches that were considered for providing debugging support for mul-

tiple languages are multilingual debugging and language-independent debugging. These

approaches might be feasible when the set of languages that the systems support are se-

mantically very similar. Such similarity, however, may be more rare in the future and is

presently non-existent for parallel languages. Hence there has been a strong need to pur-

sue other debugging methods that are capable of supporting a semantically diverse set of

languages.

Maygen, the debugger generation system described in this thesis, is precisely such a

debugging method. In light of the greater semantic diversity amongst programming lan-

guages, this system is more feasible than previous approaches to providing debugging sup-

53

CHAPTER 7. CONCLUSIONS 54

port because of its ability to take into account different programming models. Additionally,

generated debuggers exhibit a large degree of functional consistency, thus minimizing the

user's overhead in learning a new debugging system for each new language.

The Maygen system provides for "quick and easy" creation of language-dependent de-

buggers for the respective target architectures. Such a feat is made possible by the system's

imposition of interface protocols to be followed by language developers and architecture

developers, provision of the glue necessary to not only smoothly connect the two interfaces

but also serve as the core debugging engine, and provision of the framework that performs

the actual gluing of the separate pieces.

Maygen has been shown to handle both a declarative language and an imperative lan-

guage with reasonable results. The generated debuggers provided at least the minimal

functionality needed for useful debugging without much additional effort on the part of lan-

guage and architecture developers. Moreover, the generated debuggers were able to cater

to the particular needs of each language and each architecture. Specifically, the generated

OPAL debugger included several commands to provide for debugging features specific to

Prolog-like languages, while the generated C debugger included commands to provide for

debugging features specific to multiprocessor architectures.

Thus, the Maygen debugger generation system is a viable approach to providing de-

bugging support for multiple languages, an increasingly important consideration as very

different languages, such as parallel languages, are created.

7.2 Future Work

Because Maygen presents a feasible solution for providing debugging support, it is interest-

ing to speculate upon what directions further research in the area of debugger generation

might take.

CHAPTER 7. CONCLUSIONS 55

Table 7.1: FUTURE MAYGEN WORK

Additional test sets
Improved test cases
Enhanced skeleton and additional interface routines

7.2.1 Maygen Prototype Enhancements

Several areas call for immediate improvement in the Maygen prototype. Most notably is the

need to further explore the sample space of programming languages and their evaluation

environments by creating additional test sets. A good third test set might be the Lisp[WH84,

Bro86] language along with the Lisp runtime system. In addition, the existing test cases

should be expanded where possible in order to produce debuggers with increased amounts of

functionality. Finally, the existing debugger skeleton could be enhanced to provide a greater

maximal amount of supported generated debugger functionality. This enhancement would

most likely also require the specification of additional interface routines to be provided by

the language and/or architecture developers. The suggested immediate modifications to

the Maygen prototype are summarized in Table 7.1.

7.2.2 Related Areas to Explore

This section presents research areas suggested by Maygen work but of a much broader na-

ture than that presented in the previous section. These areas can be grouped into four

primary topics: creation of a Runtime System Interface (RSI); characterization of a lan-

guage, architecture, or runtime system and the subsequent automatic generation of the

respective Interface routines from each characterization; debugging of optimized code; and

true debugging of parallel systems.

The division of the "world" that Maygen debuggers view is a rather unique one. Al-

though the separation of a source program from that on which it runs, its evaluation envi-

CHAPTER 7. CONCLUSIONS 56

ronment, is a viable approach for the Maygen debugger, an alternative division might be

to separate the source program from its runtime system as well as from its architecture.1

This approach might provide for a "cleaner" and more traditional division; but, at the same

time, this approach might be unnecessarily complex due to the desire to exploit higher-level

abstractions when available, as described in Section 4.2.

A more thought-provoking area to explore is that of characterizing a source language

in a way that a generation system could then automatically create the Source Language

Iuterface routines defined in the Maygen system. Analogously, the characterizations of

a machine architecture and of a runtime system, as well as the subsequent generation

of Machine Architecture Interface and Runtime System Interface routines pose interesting

questions. A key idea to keep in mind, though, is that although a method of characterization

for these areas could prove theoretically interesting, it might not be practical in the context

of efficient debugger generation. For example, language developers might find it much easier

to conform to a set protocol for interface interaction (i.e., provide defined routines) rather

than to conform to a "characterization method" for describing their language (i.e., provide

a characterization of their language).

A third idea is that perhaps a debugger generation system could be developed that can

better handle the debugging of optimized code. A start in that direction is that generated

debuggers might be able to support semantically-unchanging optimizations--optimizations

that are transparent to the user, such as dealing with register use versus memory use or

caching. Another example of such an optimization would be one that moves a value to a

storage place earlier than expected according to the source program, but that does not mat-

ter since that particular memory location is not needed any more. Hennessy examines the

tradeoff between the optimization of code and the ability to symbolically debug it[Hen79],

while Zellweger both studies the problem of debugging optimized programs and attempts

to confront one aspect of this problem[Zel84].

A final area of research suggested by Maygen work is the generation of true parallel

"1 "Architecture' in this case refers to the evaluation environment minus the runtime system.

CHAPTER 7. CONCLUSIONS 57

Table 7.2: DEBUGGER GENERATION SYSTEMS: AREAS TO EXPLORE

Separation of runtime system interface
Characterization of source languages
Generation of SLI routines
Characterization of machine architectures
Generation of MAI routines
Characterization of runtime systems
Generation of RSI routines
Handling of Optimized Code
Addition of True Parallelism

debuggers. Although Maygen's approach of having knowledge of multiple processing nodes

but debugging only one node at a time is sufficient for this initial project in debugger

generation, future work will probably need to better address parallel debugging issues.

The suggested areas to explore in further research of debugger generation systems are

summarized in Table 7.2.

Without question, Maygen not only has presented an interesting and viable approach

to providing debugging support for multiple language systems, but has also suggested a

wealth of interesting research topics to pursue.

Appendix A

SLI Input File Template

%% INPUT FILE FORMAT FOR SOURCE LANGUAGE

SOURCE LANGUAGE NAME:

(e.g., CLU)

yoursource languagename

DEBUGGER LIBRARY PATH:

(e.g., /users/tsien/maygen/opal/)

%###/ o10

your debugger librarypath name

DEBUGGER LIBRARY FILE NAME WITHOUT LEADING "lib" OR TRAILING ".a":

(e.g., for "libmf debug.a", only use "mf-debug")

%###70

your library file name

%%%%%%%%%%%

%% Procedures: %%

%%%%%%%%%%% 20

58

APPENDIX A. SLI INPUT FILE TEMPLATE 59

l. %###9 Y
int initsli(void)

%% Requires:

%% Modifies:

%% Effects: Does any necessary initializations for SLI

%% Returns: 1 if everything initialized ok; 0 otherwise.

%% Note: (If procedure missing, assumed that there is

no initialization necessary for SLI) go

2. %###% [Y or N]

int mapprocto object(char *proc, char *label)

%% Requires: proc is name user uses to refer to given procedure

label is name that compiler might use to refer to proc

%% Modifies:

%% Effects:

%% Returns: -1 if syntax error in proc spec 40

0 if procedure not found

%% n > 0. where n = object line corresponding to

%% the source code of proc

3. %###% [Y or N]

int mapprocbeginto-object(char *proc, char *label)

%% Requires: proc is name user uses to refer to given procedure

%% label is name that compiler might use to refer to proc so

%% Modifies:

%% Effects:

%% Returns: -1 if syntax error in proc spec

%% 0 if procedure not found

%% n > 0, where n = object line corresponding to

%% the beginning source line of proc

APPENDIX A. SLI INPUT FILE TEMPLATE 60

4. %###% [Y or N]

int mapprocendtoobject(char *proc, char *label) 6o

%% Requires: proc is name user uses to refer to given procedure

%% label is name that compiler might use to refer to proc

%% Modifies: ---

%% Effects:

%% Returns: -1 if syntax error in proc spec

%% 0 if procedure not found

%% n, where n = object line corresponding to

%% the end source line of proc

5. %###% [Y or N]

void trace procedure(char *proc, char *label)

%% Requires: proc is name user uses to refer to given procedure

%% label is name that compiler uses to refer to proc

%% Modifies:

%% Effects: Does whatever is necessary to trace proc

%% Returns:

6. %###% [Y or N]

int map source to-object(int srcline)

%% Requires: srcline is an integer

%% Modifies:

%% Effects:

%% Returns: -1 if there is not source code at line srcline, or

%% if a breakpoint cannot be set at that line.

%% n, where n = object line corresponding to 9o

%% line srcline.

APPENDIX A. SLI INPUT FILE TEMPLATE 61

T. %:#:#*0 Y

int read symbols(char *filename)

%% Requires: filename is the name of file with symbols to be read in

%% Modifies: ---

%% Effects: Loads user program symbols and/or labels;

%% sets global int programstart loc to be address of 10o

%% where program starts, if known. Sets global

%% char user programo to be filename.

%% Returns: 1 if symbols read successfully; 0 otherwise.

8. %###% [Y or N]

void print labels(char *argl)

%% Requires: argl is not required, but could be used

%% Modifies: --- 110

%% Effects: Prints out labels of user program currently loaded.

%% Returns: ---

9. %###% [Y or N]

void listprocedures(char *argl)

%% Requires: argi is not required, but could be used

%% Modifies: ---

%% Effects: Prints out procedures of user program Ldrrently loaded. 120

%% Returns:

10. %###% [Y or N]

void print-symbols(char *argl)

APPENDIX A. SLI INPUT FILE TEMPLATE 62

%% Requires: argi is not required, but could be used

%% Modifies:

%% Effects: Prints out symbols of user program currently loaded.

%% Returns: 130

11. %###% [Y or NJ

void displayjsource line text(char *src line)

%% Requires: src line is a line of user program or is empty

%% Modifies:

%% Effects: Prints out source code corresponding to line src line

%% of user program, or, if srcline is empty, then

%% shows current location in program and the source 140

%% code corresponding to current location.

%% Returns:

12. %###% [Y or NI

void untrace procedure(char *proc, char *label)

%% Requires: proc is name user uses to refer to given procedure

%% label is name that compiler uses to refer to proc

%% Modifies: 150

%% Effects: Does whatever is necessary to untrace proc

%% Returns:

13. %###% [Y or NI

void printsliinfo(void)

%% Requires:

%% Modifies:

%% Effects: print source language information relevant to debugging 160

%% Returns:

APPENDIX A. SLI INPUT FILE TEMPLATE 63

14. %###% [Y or N]

hit ProcessSLIArgs(int argc. char *argvo, char *progname)

%% Requires: progname is name of debugger program

%% Modifies:

%% Effects: Processes arguments, if any, of a generated debugger.

%% Prints a "Usage error:" line to output if returning 0. 170

%% Returns: I If everything ok; 0 otherwise.

EXTENSION COMMANDS

NUMBER OF EXTENSION COMMANDS

(0 <= number <= 20)

%###91 ISo

<number>

For each extension command, specify:

(1) help line, including both name of command user will type

and help string for help menu

(e.g., "ta Toggle all-solutions.")

(2) invocation of name of routine to be called, using arguments

argl, arg2, arg3 (max 3 args)

(e.g., "toggle-all.solutionsO(;")

(3) extern reference line 190

(e.g., "extorn void toggle.al1.solutionsO ;")

EXAMPLE:

Extension Command I

%###%

APPENDIX A. SLI INPUT FILE TEMPLATE 64

ta <n> Toggle all-solutions. n = max number of soins

toggle all solutions(arg);

exte**Yn os200

exteru void toggie-all-solutionso;

Appendix B

MAI Input File Template

%% INPUT FILE FORMAT FOR TARGET ARCHITECTURE

TARGET ARCHITECTURE NAME:

(e.g., CM5)

,Y(###71

your architecturena .ae

DEBUGGER LIBRARY PATH:

(e.g., /users/tsien/maygen/om/)

7P###%1 l

your debugger_|ibrarypath_name

DEBUGGER LIBRARY FILE NAME WITHOUT LEADING "lib" OR TRAILING ".a:

(e.g., for "libmf_debug.aa. only use *'- debug")

7(###%

yourjibraryfilename

ACTUAL NUMBER OF PROCESSING NODES IN TARGET ARCHITECTURE

("1" for a uniprocessor)

0###90 20

your-number

65

APPENDIX B. MAI INPUT FILE TEMPLATE 66

DESIRED NUMBER OF PROCESSING NODES IN TARGET ARCHITECTURE

(DESIRED NUMBER <= ACTUAL NUMBER: "1" for a uniprocessor)

your-number

17%% X % %7X V

%% Procedures: %%

O7 1%7, V7 %%%%, s0

1. %###%, Y

iut init_mai(void)

%% Requires:

%7 Modifies:

%% Effects: Does any necessary initializations for MAI

%% Returns: 1 if initialization successful; 0 otherwise.

40

2. %###% Y

int program loaded (void)

%% Requires:

%' Modifies:

%% Effects:

%W Returns: I if program is loaded

I%(0 if program is not loaded

s0

3. %###% [Y or N]

int InstallMachineBreakpoint(int addr)

%% Requires: addr is a valid code address of the current

%% . program where a breakpoint can be set

%% Modifies: (object code)

APPENDIX B. MAI INPUT FILE TEMPLATE 67

%% Effects: Installs a breakpoint at addr such that when

%71 program execution reaches addr, it halts

%% Returns: Original instruction (int) being replaced by breakpoint,

to be passed to UtninstallMachineBreakpoint. Returns 60

an integer < 0 if di' not install correctly.

4. %###% Y

void con tinueprogram(void)

%% Requires:

%% Modifies:

%% Effects: If program is running, continues running it.

Otherwise prints a message to user that program 70

WX should be started first.

%% Returns:

5. %###% [Y or N]

int UninstallMachineBreakpoint(int addr, int orig instruction)

%5%

%% Requires: addr is a valid code address of the current

program where a breakpoint can be removed;

%% orig instruction is identical to that returned by so

%% InstallMachineBreakpoint

%% Modifies: (object code)

%% Effects: Uninstalls a breakpoint at addr such that when

program execution reaches addr, it no longer halts

due to this breakpoint. Original instruction is

reinstated.

%% Returns: int n: n=0 if worked correctly; n<0 if did not work

6. %###% [Y or N] 90

int SetMachineProcBreakpoint(char *proc, int n, int trace on)

APPENDIX B. MAI INPUT FILE TEMPLATE 68

% %

%% Requires: proc is name user uses to refer to a procedure or which

a breakpoint is to be added

in is the code address where this procedure starts

%% Modifies: (object code)

%% Effects: Adds proc to list of procedure breakpoints by calling

int addto procbreakpt_list(char *proc, int addr,

(77 int trace on). (1 if good; 0 if bad)

(in SKEL) and adds corresponding machine address 100

breakpoint(s) from list by calling (in SKEL:)

int addtomachine breakpt-list(int addr).

%OX (1 if good; 0 if bad)

%% Returns: 1 if set successfully; 0 otherwise

7. %###7, [Y or N]

int ClearMachineProcBreakpoint(char *proc, int n)

%% Requires: proc is name user uses to refer to a procedure on which 110

%%, there is a breakpoint to be removed.

717 n is the code address where the procedure starts

%% Modifies: (object code)

%% Effects: Removes proc from list of procedure breakpoints by calling

%7%lVC int remove fromprocbreakpt-list(char *proc, int addr)

(1 if good; 0 if bad returned)

(in SKEL) and removes corresponding machine address

%% breakpoints from list by calling (in SKEL:)

%% int remove from machine breakptlist(int addr)

%% (1 if good; 0 if bad returned) 120

%% Returns: I if successful; 0 otherwise

8. %###% Y

int read~program(char *filename)

APPENDIX B. MA INPUT FILE TEMPLATE 69

%% Requires: filename is the name of file to be read in

%% Modifies: (machine state)

%% Effects: Loads user program; loads the code into the code

%% memory. Set flags such that program_loaded() will 130

%% return true. Reinitialize memory, etc.

%% Returns: I if program read successfully, 0 otherwise
% 7%

9. %###% [Y or NJ

void print register contents(char *argl, char *arg2)

%% Requires: argi is possibly an environment

%% Modifies:

%% Effects: Prints the contents of the machine registers; 140

If env is given, only prints that environment

%% Returns:

10. %###% Y

void runprogram(char *al)

%% Requires: argl is empty or is a line number at which to begin

%% execution

%% Modifies: -- 0- IS

%% Effects: Reports that user program is already running (and

%% suspended) or else begins to run the program.

%% Returns:

11. %###% [Y or N]

void dostep(char *argl, char *arg2)

%% Requires: argl is empty or the number of steps user wants to step.

%% arg2 is empty or the location from which to begin stepping too

%% Modifies:

APPENDIX B. MAI INPUT FILE TEMPLATE 70

%% Effects: Executes argl steps of user program, beginning at

location arg2.

%% Returns:

12. %###% [Y or N]

void do bigstep(char *argl)

%% Requires: argl is empty or the location from which to begin stepping 170

%% Modifies:

%% Effects: Executes a process/procedure of user program, beginning at

location argl.

%% Returns:

13. %###% Y

void reset machine(void)

%% Requires: --- ISo

%% Modifies: machine state

%% Effects: Resets the machine state, sets running to false (0)

14. %###% [Y or N]

void print mai info(void)

%% Requires:

%% Modifies:

%% Effects: Prints out information about user program, debugger 190

%70 status, etc.

%% Returns:

15. %###% [Y or N]

int ProcessMAIArgs(int argc, char *argvo, char *progname)

APPENDIX B. MAI INPUT FILE TEMPLATE 71

%% Requires: progname is name of debugger program

%% Modifies:

%% Effects: Processes arguments, if any, of a generated debugger. 200

Prints a "Usage error:" line to output if returning 0.

%% Returns: I if everything ok; 0 otherwise.

16. %###% [Y or N]

hit change node(int argl)

%% Requires: argl is an integer specifying the new node to be

%% debugged. Is already checked for <= max available

%% and > 0 210

%% Modifies: machine state

%% Effects: Does the necessary internal state changes to debug

node number argl

%% Returns: 1 if everything ok; 0 otherwise.

17. %###% [Y or N]

int resizenumber nodes(iat argl)

%% Requires: argl is an integer specifying the new desired number 220

of processing nodes. Is already checked for <= max

and > 0

%% Modifies: machine state

%% Effects: Does the necessary internal state changes to alter

desired number of nodes available to argi

%% Returns: I if everything ok; 0 otherwise.

EXTENSION COMMANDS 230

APPENDIX B. MAI INPUT FILE TEMPLATE 72

NUMBER OF EXTENSION COMMANDS

(0 <= number <= 20)

%###%Y

<number>

For each extension command, specify:

(1) help line, including both name of command user will type

and help string for help menu 240

(e.g., "ta Toggle all-solutions.")

(2) invocation of name of routine to be called, using arguments

argl, arg2, arg3 (max 3 args)

(e.g., "toggle-all-solutions() ;")

(3) extern reference line

(e.g., "extern void toggle.all-solutions 0;")

EXAMPLE:

Extension Command 1 250

ta <n> Toggle all-solutions. n = max number of solns

%###70

toggle all-solutions(argl);

vdl###%
extern void toggle-all-solutions();

Appendix C

Sample OM Virtual Machine MAI

Input File

%% MAI INPUT FILE FOR TARGET ARCHITECTURE OM VIRTUAL MACHINE

TARGET ARCHITECTURE NAME:

OM

DEBUGGER LIBRARY PATH:

/users/tsien/maygen/om /

10

DEBUGGER LIBRARY FILE NAME WITHOUT LEADING "lib" OR TRAILING ".a":

mg.mai

ACTUAL NUMBER OF PROCESSING NODES IN TARGET ARCHITECTURE

73

APPENDIX C. SAMPLE OM VIRTUAL MACINLUE MAI INPUT FILE 74

DESIRED NUMBER OF PROCESSING NODES IN TARGET ARCHITECTURE

0/020

%% Procedures: %

1. %###% Y

int init-mai(void)

2. %###% Y

int program_loaded(void) 30

3. %###% Y

int InstallMachineBreakpoint(int addr)

4. %###% Y

void continueprogram(void)

5. %###% Y

hit UninstallMachineBreakpoint(int addr, hit orig instruction)

40

6. %###% Y

hit SetMachineProcBreakpoint(char *proc, int n, int trace-on)

7. %###% Y

int ClearMachineProcBreakpoint(char *proc, int n)

8. %###% Y

hit read.program(char *filename)

9. %###% Y so

void print register contents(char *argl, char *arg2)

10. %###% Y

APPENDIX C. SAMPLE OM VIRTUAL MACHINE MAI INPUT FILE 75

void run program(char *al)

11. %###% Y

void dostep(char *argl, char *arg2)

12. %###% Y

void do-big step(char *argl) 6o

13. %###% Y

void reset.machine(void)

14. %###% Y

void print mai info(void)

15. %###% Y

int ProcessMAIArgs(int argc, char *argvo, char *progname)

70

16. %###% N

int change node(int argl)

17. %###% N

int resize number nodes(int argl)

EXTENSION COMMANDS

NUMBER OF EXTENSION COMMANDS so

12

Extension Command 1

ta Toggle all-solutions.

toggle all solutions();

APPENDIX C. SAMPLE OM VIRTUAL MACHINE MAI INPUT FILE 76

%7###%

extern void toggleall solutionso; 90

Extension Command 2

tb Toggle breadth-first searci,.

toggle-breadth firsto;

extern void toggle breadthfirst();

100

Extension Command 3

Tgq###%um

tq Toggle quiet mode.

toggle~quiet-mode(;

extern void toggle quiet mode();

110

Extension Command 4

tp T# # #et

tp Toggle process trace.

toggle_process trace(;

,Y(###%Y~

extern void togglejprocess traceo;

Extension Command 5 120

T lnu###o i ot
ti Toggle instruction trace.

APPENDIX C. SAMPLE OM VIRTUAL MACHINE MAI INPUT FILE 77

toggle-instruction-trace();

extern void toggle instruction trace);

Extension Command 6

)## #)130

td Toggle symbolic reg display.

toggle symbolic display();

9(1###90

extern void togglesymbolic-display);

Extension Command 7

70###0/(

pc Print code from <n> to <m>. 140

%###,Y

print-code(argl, arg2);

extern void print-code);

Extension Command 8

%###0/

ph Print heap from <n> to <m>.

IS0

print heap(argl, arg2);

extern void print heap();

Extension Command 9

pm Print message (detailed contents of M reg).

APPENDIX C. SAMPLE OM VIRTUAL MACHINE MAI INPUT FILE 78

print messageinfo(argl, arg2); le1

extern void print message info(;

Extension Command 10

1'.) Print process (detailed contents of P reg).

print_processinfo(argI, arg2);

%###71 170

extern void print process-infoo;

Extension Command 11

pq Print message queue.

print queue contentso;

51###70

extern void print_queue contents): 18O

Extension Command 12

pt Print process tree.

%###IV(

print process.tree();

extern void print.process-treeo;

Bibliography

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers. Principles, Tech-

niques, and Tools. Addison-Wesley Publishing Company, 1986.

[BBK+82] James Bodwin, Laurette Bradley, Kohji Kanda, Diane Litle, and Uwe Pleban.

Experience with an Experimental Compiler Generator Based on Denotational

Semantics. In Proceedings of the A CM SIGPLAN Symposium on Compiler Con-

struction, published in ACM SIGPLAN Notices, pages 216-223. University of

Michigan, June 1982. volume 17, number 6.

[Bea83] Bert Beander. VAX DEBUG: An Interactive, Symbolic, Multilingual Debugger.

ACM Sigplan Notices, 18(8):173-179, August 1983. Proceedings of the ACM

Sigsoft/Sigplan Software Engineering Symposiun on High Level Debugging.

[Bir82] Peter L. Bird. An Implementation of a Code Generator Specification Language

for Table Driven Code Generators. In Proceedings of the A CM SIGPLAN Sym-

posium on Compiler Construction, published in A CM SIGPLAN Notices, pages

44-55. University of Michigan, June 1982. volume 17, number 6.

[Bro79] P. J. Brown. Writing Interactive Compilers and Interpreters. Wiley Series in

Computing. John Wiley & Sons, Computing Laboratory, University of Kent at

Canterbury, 1979.

[Bro86] Hank Bromley. Lisp Lore: A Guide To Programming the Lisp Machine. Kluwer

Academic Publishers, 1986.

79

BIBLIOGRAPHY 80

[Car83] James R. Cardell. Multilingual Debugging with the SWAT High-level Debugger.

ACM Sigplan Notices, 18(8):180-189, August 1983. Proceedings of the ACM

Sigsoft/Sigplan Software Engineering Symposium on High Level Debugging.

[Con90] John S. Conery. Parallel Logic Programs on the HP Mayfly. Technical Report

CIS-TR-90-22, University of Oregon, December 7 1990.

[Con9l] John S. Conery. OPAL User's Guide. University of Oregon, February 6 1991.

[Con92] John S. Conery. Parallel Logic Programs on the Mayfly. Lisp and Symbolic

Computation: An Internat-rlal Journal, 5(1/2):49-72, May 1992.

[Dav92] Al Davis. Mayfly: A General-Purpose, Scalable, Parallel Processing Architec-

ture. Lisp and Symbolic Computation: An International Journal, 5(1/2):7-47,

May 1992.

[DNF79] Michael K. Donegan, Robert E. Noor.an, and Stefan Feyock. A Code Gener-

ator Generator Language. In Proceedings of the ACM SIGPLAN Symposium

on Compiler Construction, published in A CM SIGPLAN Notices, pages 58-64.

College of William and Mary, August 1979. volume 14, number 8.

[Edw75] Edwin Satterthwaite Jr. Source Language Debugging Tools. PhD thesis, Stanford

University, May 1975. Outstanding Dissertations in the Computer Sciences.

Garland Publishing, Inc. 1979.

[FJ88] Charles N. Fischer and Richard J. LeBlanc Jr., editors. Crafting a Compiler. The

Benjamin/Cummings Publishing Company, Inc., 2727 Sand Hill Road, Menlo

Park, CA 94025, 1988.

[GG78] R. S. Glanville and S. L. Graham. A New Method for Compiler Code Generation.

In 5th A CM Symposium on Principles of Programming Languages, 1978.

[Hen79] John L. Hennessy. Symbolic Debugging of Optimized Code. Technical Report

175, Stanford University, Computer Systems Laboratory, July 1979.

BIBLIOGRAPHY 81

(Joh75] S. C. Johnson. YACC: Yet Another Compiler-Compiler. Computing Science

Technical Report 32, Bell Laboratories, Murray Hill, NJ, 1975.

[Joh77] Mark Scott Johnson. The Design of a High-Level, Language-Independent Sym-

bolic Debugging System. In Proceedings of the Annual Conference of the A CM,

pages 315-322, 2075 Wesbrook Mall, Vancouver, British Columbia V6T 1W5,

1977. University of British Columbia.

[Joh78] Mark Scott Johnson. The Design and Implementation of a Run-Time Analy-

sis and Interactive Debugging Environment. PhD thesis, University of British

Columbia, August 1978. Technical Report 78-6. 148pp.

[Joh8l] Mark Scott Johnson. Dispel: A Run-time Debugging Language. Computer

Languages, 6(2):79-94, 1981.

[Joh82] Mark Scott Johnson. A Software Debugging Glossary. A CM Sigplan Notices,

17:53-70, February 1982.

(Kac9O] Peter Kacsuk. Ezecution Models of Prolog for Parallel Computers. Research

Monographs in Parallel and Distributed Computing. The MIT Press, 1990.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language,

Second Edition. Prentice Hall Software Series. Prentice Hall, 1988.

[KW91] Stephen G. Kochan and Patrick H. Wood. Topics in C Programming. John

Wiley & Sons, Inc, 1991.

[LJG82] Rudolf Landwehr, Hans-Stephan Jansohn, and Gerhard Goos. Experience with

an Automatic Code Generator Generator. In Proceedings of the A CM SIGPLAN

Symposium on Compiler Construction, published in ACM SIGPLAN Notices,

pages 56-66. Universitat Karlsruhe, Institut fur Informatik II, June 1982. volume

17, number 6.

[Mak9l] Ronald Mak. Writing Compilers &4 Interpreters. John Wiley & Sons, Inc, 1991.

BIBLIOGRAPHY 82

[MKR79] D R. Milton, L. W. Kirchhoff, and B. R. Rowland. An ALL(l) Compiler Gener-

ator. In Proceedings of the A CM SIGPLAN Symposium on Compiler Construc-

tion, published in A CM SIGPLAN Notices, pages 152-157, Naperville, IL 60540,

August 1979. Bell Laboratories. volume 14, number 8.

[MM83] Henry McGilton and Rachel Morgan. Introducing the UNIX System. McGraw-

Hill Software Series For Computer Professionals. McGraw-Hill Book Company,

1983.

[Ras82] Martin R. Raskovsky. Denotational Semantics as a Specification of Code Gener-

ators. In Proceedings of the A CM SIGPLAN Symposium on Compiler Construc-

tion, published in ACM SIGPLAN Notices, pages 230-244. Essex University,

June 1982. volume 17, number 6.

[Sch88] David A. Schmidt, editor. Denotational Semantics. A Methodology for Language

Development. Win. C. Brown Publishers, Dubuque, Iowa, 1988.

[Sto77] Joseph E. Stoy, editor. Denotational Semantics: The Scott-Strachey Approach

to Programming Language Theory. The MIT Press Series in Computer Science.

The MIT Press, Cambridge, Massachusetts, 1977. Foreword by Dana S. Scott.

[sW90] A. Schleiermacher and J. F. H. Winkler. The Implementation of ProTest: A

Prolog Debugger for a Refined Box Model. Software-Practice and Ezperience,

20(10):985-1006, October 1990.

[Tof9O] Mads Tofte. Compiler Generators. What They Can Do, What They Might Do,

and What They Will Probably Never Do, volume 19 of EA TCS Monographs on

Theoretical Computer Science. Springer-Verlag, 1990. Editors: W. Brauer and

G. Rozenberg and A. Salomaa.

[Tro82] James Henry Troisi. An Interpreter and Symbolic Debugger for C. PhiD thesis,

Massachusetts Institute of Technology, August 1982.

BIBLIOGRAPHY 83

[War83] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI

International, October 1983.

[WH841 Patrick Winston and Berthold Klaus Paul Horn. Lisp, Second Edition. Addison-

Wesley Publishing Company, 1984.

[Zel84] Polle Trescott Zellweger. Interactive Source-Level Debugging of Optimized Pro-

grams. PhD thesis, University of California, Berkeley, May i984. Xerox PARC

CSL-84-5.

